American Society for Clinical Pharmacology and Therapeutics Orlando, Florida 24 March 2018

Bayesian Statistics and Its Implications for Drug Development or pr(you are a Bayesian) > 0.50

Stephen J. Ruberg, PhD President Analytix Thinking, LLC

Outline

Objective: CLEARLY compare and contrast Bayesian versus Frequentist paradigms [... so you **COMPLETELY** understand why the Bayesian paradigm has enormous utility (primacy?) in drug development]

- 1. Bayesian versus Frequentist inference
- 2. Designing a clinical trials versus Interpreting a clinical trial result
- 3. Bayes Factor versus P-values

Bayesian versus Frequentist Inference

Data | Hypothesis vs Hypothesis | Data

(C) ANALYTIX THINKING, LLC

A Problem of Inference

10,000 Coins

9,999 Fair Coins (H/T) 1 Biased Coin (H/H)

Problem

- 1. I draw out one coin.
- 2. I will flip it repeatedly, and tell you the result.
- You tell me when you decide whether I have the Biased Coin or not.

Number of Flips	Result	Biased Coin?
1	н	Y or N
2	н	Y or N
3	Н	Y or N
4	Н	Y or N
5	Н	Y or N
6	Н	Y or N
7	Н	Y or N
8	Н	Y or N
9	Н	Y or N
10	Н	Y or N

Number	Decult	Biased
of Flips	Result	Coin?
11	н	Y or N
12	н	Y or N
13	н	Y or N
14	н	Y or N
15	н	Y or N
16	н	Y or N
17	н	Y or N
18	н	Y or N
19	н	Y or N
20	Н	Y or N

1. What is the probability of seeing N consecutive heads <u>IF</u> I have a fair coin?

2. What is the probability that I selected the biased coin <u>IF</u> I observe N consecutive heads ... [from a coin randomly drawn from a bag of 9,999 fair coins and 1 biased coin]?

Two Perspectives

1. Pr (observed data | coin is fair)

 H_0 : Coin is fair [i.e. pr(heads) = 0.50] H_a : Coin is not fair [i.e. pr(heads) = 1.00]

 $Pr[N \text{ consecutive heads} | fair coin] = (0.50)^{N}$

Better known as the *p-value*

Frequentist perspective

Frequentist Results

Number of Flips	Result	p-value
1	н	0.50000000
2	Н	0.25000000
3	н	0.125000000
4	н	0.062500000
5	н	0.031250000
6	н	0.015625000
7	н	0.007812500
8	н	0.003906250
9	н	0.001953125
10	н	0.000976563

Number of Flips	Result	p-value	
11	Н	0.000488281	
12	н	0.000244141	
13	н	0.000122070	
14	Н	0.000061035	
15	н	0.000030518	
16	Н	0.000015259	
17	н	0.000007629	
18	н	0.00003815	
19	Н	0.000001907	
20	Н	0.00000954	

Two Perspectives

2. Pr (coin is biased | observed data)

If we have P(A|B),

we want to obtain the conditional probability P(B|A)

Bayes Theorem (1763)*

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

*As formulated by Laplace (1812)

Bayesian Results

Number of Flips	Result	Pr(Biased Coin)
1	н	0.000200
2	н	0.000400
3	Н	0.000799
4	Н	0.001598
5	н	0.003190
6	Н	0.006360
7	Н	0.012639
8	Н	0.024968
9	Н	0.048711
10	Н	0.092897

Number of Flips	Result	Pr(Biased Coin)
11	Н	0.170001
12	Н	0.290600
13	Н	0.450333
14	Н	0.621006
15	Н	0.766198
16	Н	0.867624
17	н	0.929121
18	н	0.963258
19	Н	0.981285
20	Н	0.990554

A Problem of Inference

100 Coins

99 Fair Coins (H/T) 1 Biased Coin (H/H)

Problem

- 1. I draw out one coin.
- 2. I will flip it repeatedly, and tell you the result.
- You tell me when you decide whether I have the Biased Coin or not.

The Results

Number of Flips	Prior = 1/10,000 Pr(Biased Coin)	Prior = 1/100 Pr(Biased Coin)
1	0.000200	0.019802
2	0.000400	0.038835
3	0.000799	0.074766
4	0.001598 0.139130	
5	0.003190 0.244275	
6	0.006360 0.392638	
7	0.012639	0.563877
8	0.024963 0.721127	
9	0.048711	0.837971
10	0.092897	0.911843

Number of Flips	Prior = 1/10,000 Pr(Biased Coin)	Prior = 1/100 Pr(Biased Coin)
11	0.170001	0.953889
12	0.290600	0.976400
13	0.450333	0.988059
14	0.621006	0.993994
15	0.766198	0.996988
16	0.867624	0.998492
17	0.929121	0.999245
18	0.963258	0.999622
19	0.981285	0.999811
20	0.990554	0.999906

The Results

			i	I F			i
# of Flips	p-value	Prior = 1/10,000 Pr(Biased Coin)	Prior = 1/100 Pr(Biased Coin)	# of Flips	p-value	Prior = 1/10,000 Pr(Biased Coin)	Prior = 1/100 Pr(Biased Coin)
1	0.500000	0.000200	0.019802	11	0.0004882	0.170001	0.953889
2	0.250000	0.000400	0.038835	12	0.0002441	0.290600	0.976400
3	0.125000	0.000799	0.074766	13	0.0001220	0.450333	0.988059
4	0.062500	0.001598	0.139130	14	0.0000610	0.621006	0.993994
5	0.031250	0.003190	0.244275	15	0.0000305	0.766198	0.996988
6	0.015625	0.006360	0.392638	16	0.0000153	0.867624	0.998492
7	0.0078125	0.012639	0.563877	17	0.0000076	0.929121	0.999245
8	0.0039063	0.024963	0.721127	18	0.000038	0.963258	0.999622
9	0.0019531	0.048711	0.837971	19	0.0000019	0.981285	0.999811
10	0.0009766	0.092897	0.911843	20	0.0000010	0.990554	0.999906

Note: The p-value never changes regardless of your prior knowledge!!!!

For the same level of evidence

in the current experiment,

different inferences are made

about the

probability of the hypothesis being true

(or false)

based on prior knowledge

CT Design versus Interpretation

The Diagnostic Test Analogy

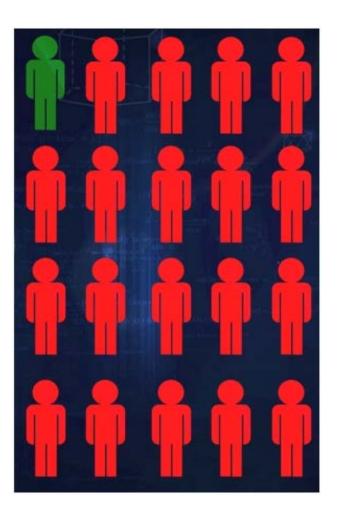
(C) ANALYTIX THINKING, LLC

Interpreting results

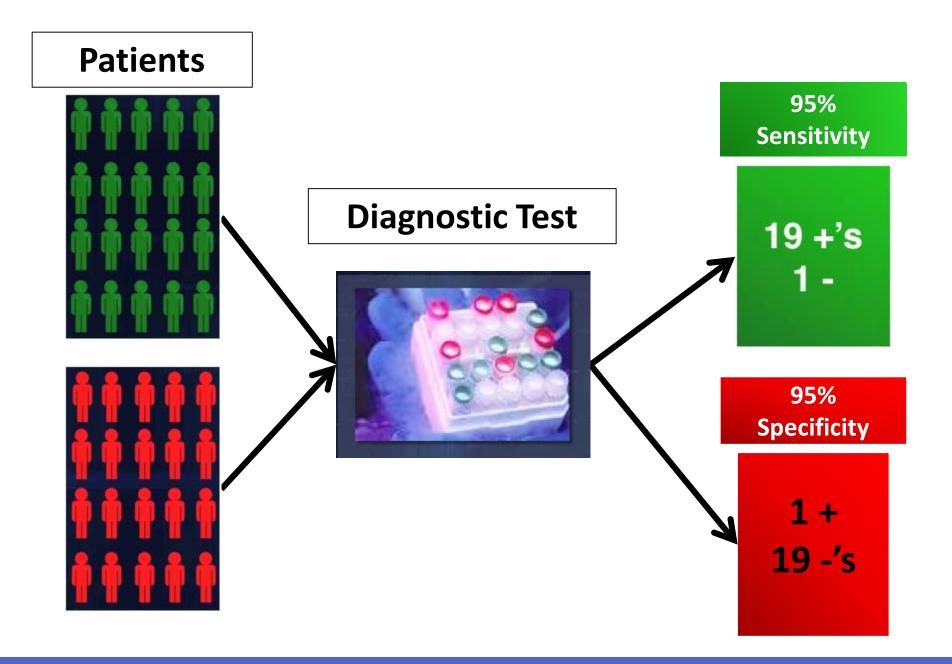
A diagnostic test is analogous to a clinical trial design **and interpretation**.

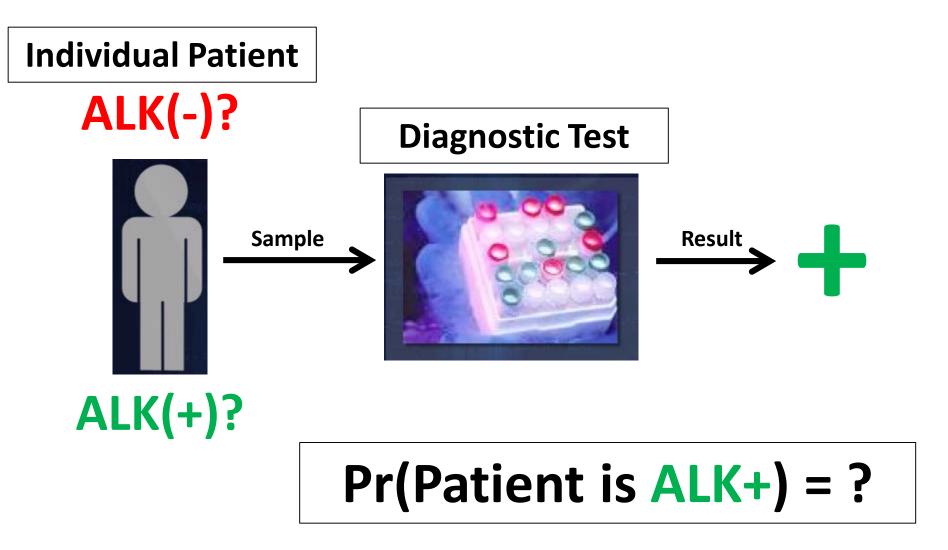
Provides a conceptual perspective on the frequentist and Bayesian approach to **understanding what we know and how well we know it.**

Population

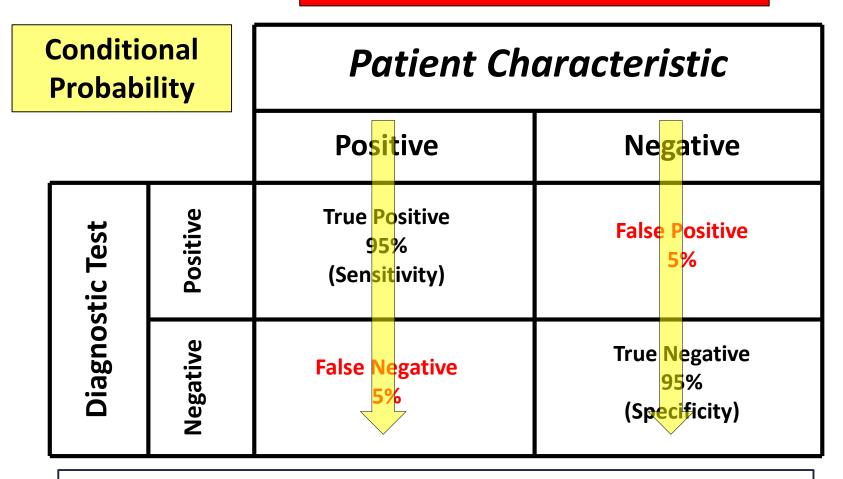


5% of Population have ALK gene





Developing/Designing the "Assay"



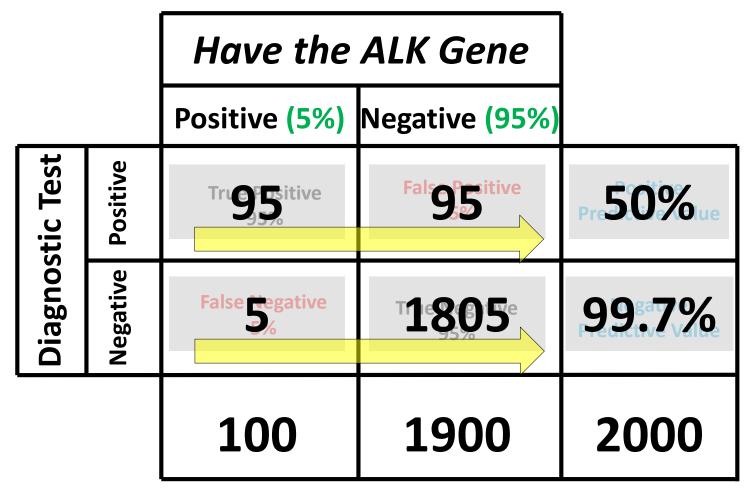
Prob (diagnostic test is positive *IF* **the patient has the characteristic)**

Interpreting an Observed Result

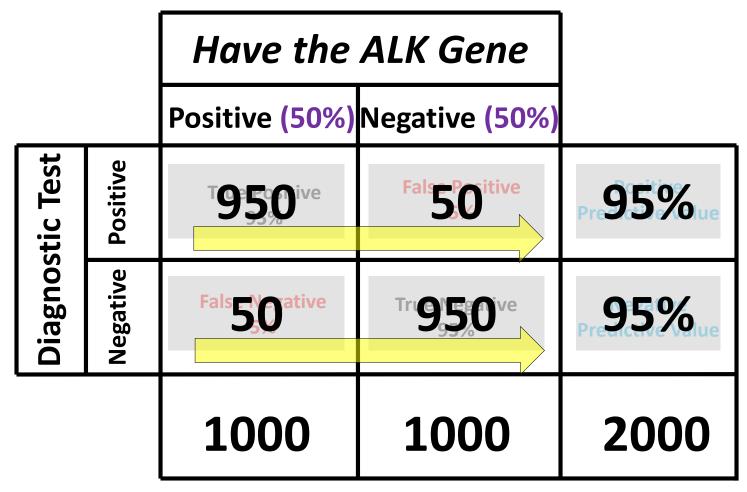
			aracteristic vn Truth)	Conditional Probability
		Positive	Negative	
iagnostic Test	Positive	True Positive 95%	False Positive 5%	Positive Predictive Value
Diagnos	Negative	False Negative 5%	True Negative 95%	Negative Predictive Value

Prob (patient has the characteristic **IF** the diagnostic test is positive)

Underlying Prevalence for ALK gene is 5%



Underlying Prevalence for XYZ gene is 50%



KEY MESSAGES

Sensitivity and Specificity are the focus of *assay design* and *development*

The **Positive (Negative) Predictive Values** are the focus of *interpreting results* (assay outputs)

THE PPV (NPV) ARE DEPENDENT ON THE UNDERLYING PREVALENCE OF THE CHARACTERISTIC (e.g. disease/marker status)

The Clinical Trial Analogy

The diagnostic test is the clinical trial

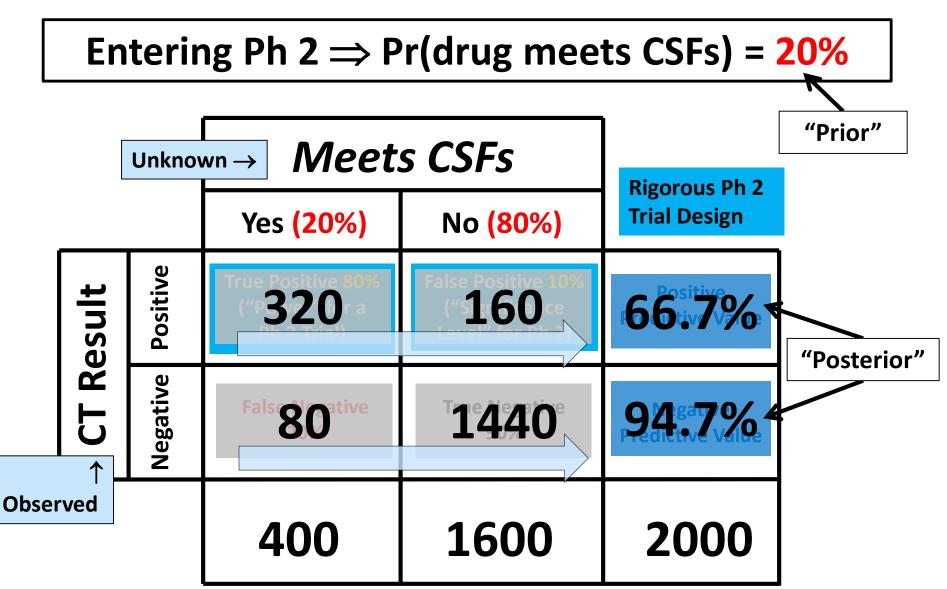
The patient characteristic is whether the treatment meets its Critical Success Factors (unknown truth)

Sensitivity and (1-Specificity) are analogous to power and significance level of the hypothesis test for the CT

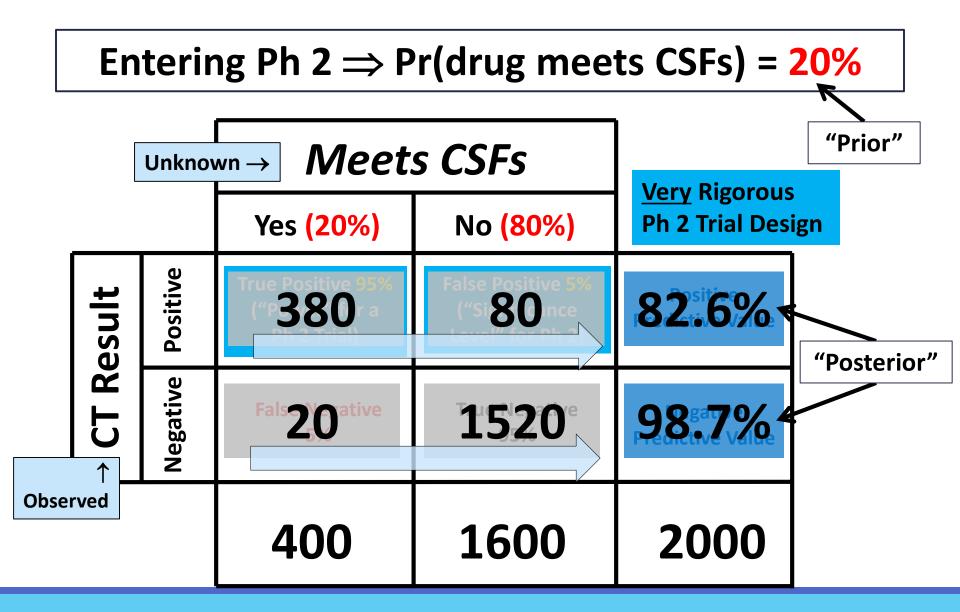
The PPV (NPV) is analogous to the "Bayesian posterior probability" that the treatment meets (fails) the CSF

THE PPV (NPV) ARE DEPENDENT ON THE PRIOR PROBABILITY OF THE TREATMENT MEETING THE CSF

THE CLINICAL TRIAL ANALOGY



THE CLINICAL TRIAL ANALOGY



Bayes Factor versus P-Values

Quantifying What We Know

(C) ANALYTIX THINKING, LLC

The Nature of the P-Value

Statistical Hypothesis Testing

- Define H₀ (the null)
- Define test statistic, S(X)
 - S(x) is the value of the statistic given the data
- $F^{-1}[S(x)]$ transforms S(x) into a p-value, $p \in (0, 1)$
 - p contains no more information about H₀ than S(x)
 - p maps one-to-one and onto (0, 1)
- Thus, the p-value is a statistic,

NOT a probability !!

Todd A. Kuffner & Stephen G. Walker (2018): Why are p-Values Controversial?, The American Statistician, DOI: 10.1080/00031305.2016.1277161

Bayes Factor

 $p_{0,pri}$ = prior probability that H_0 is false

Convert this to the odds of H_0 vs H_1 • $O_{0,pri} = (1-p_{0,pri})/p_{0,pri}$

Let p = observed p-value for test of H_0

Bayes Factor

Multiply $O_{0,pri}$ by Bayes factor* [-e × p × ln(p)] to get a bound on the posterior odds

•
$$O_{0,post} \ge O_{0,pri} \times [-e \times p \times ln(p)]$$

Convert back to probability scale

• Posterior probability for H_0 being false is $p_{0,post} \leq 1/(1+O_{0,post})$

*Sellke et al (2001) Calibration of p Values for Testing Precise Null Hypotheses. The American Statistician, February 2001, Vol. 55, No. 1, pp 62-71.

Interpreting a Clinical Trial Results (Using Bayes Factor)

If your prior is 30% probability of success (i.e. H_0 being false) entering Phase 2 ...

Observed Phase 2 P-Value	Upper Bound on Posterior Probability for H ₀ * Being False
0.20	.329
0.10	.406
0.05	.513
0.01	.774

*Using Bayes factor for converting p-values into posterior probabilities

Using Bayes Factor for Clinical Drug Development

If your prior is 30% probability of success (H_0 being false) entering Phase 2 ...

And you want to exit Phase 2 with an 70% probability of success (in Phase 3) ...

Then you need* ...

- 1 study with a p-value of 0.016
- 2 studies each with p-values of 0.05**

*Using Bayes factor for converting p-values into posterior probabilities

**Successive application of Bayes factor

Using Bayes Factor for Clinical Biomarker Identification

100 potential biomarkers

- Prior probability of success (H_0 is false) = 0.20
- Prior on H_0 is true (none are predictive) = 0.80
- Uniform prior per biomarker = 0.20/100 = 0.002

Observed p-value = 0.0001 for one biomarker

- Bonferroni adjusted p-value ≤ 0.01
- Bayesian posterior $pr(H_0 \text{ is false}) \leq 0.44$.

Berger, JO, Wang X, Shen L (2014) A Bayesian Approach to Subgroup Identification, Journal of Biopharmaceutical Statistics, 24:1, 110-129, DOI: 10.1080/10543406.2013.856026

FDA Approval

FDA wants to be sure that H_0 is false

Substantial evidence

• Consider two p-values of 0.05 for two Ph 3 trials

Prior Probability Against H _o Entering Phase 3	Posterior Probability for H ₀ Being False with Two p-values of 0.05 (≤)
0.65	.918
0.70	.933
0.75	.948
0.80	.960

FDA Approval

FDA wants to be sure that H_0 is false

Substantial evidence

• Consider one small p-values from a single Ph 3 trial

Prior Probability Against H _o Entering Phase 3	Posterior Probability for H ₀ Being False with Two p-values of 0.05 (≤)	Single P-value for 95% Posterior Probability of H ₀ Being False (≤)
0.65	.918	0.007
0.70	.933	0.010
0.75	.948	0.013
0.80	.960	0.019

Conclusion

Two perspectives

- 1. Pr(data | hypothesis is true)
- 2. Pr(hypothesis is true | data)

For a dataset / outcome of a study:

- Frequentist p-values are always the same
- Bayesian probabilities depend on your prior knowledge/probability

FREQUENTIST

BAYESIAN

Summary

Significance level and power are important elements of study design

Bayesian posterior probabilities are the most appropriate measures for interpretation of study outcomes

Bayesian perspective answers the question of interest.

pr (I THANK YOU) = 0.9999

pr (YOU THANK ME) = ??

depends on your prior

3/24/2018

(C) ANALYTIX THINKING, LLC